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i. Introduction 

Rotational relaxation first attracted the attention of physicists in the beginning of 
the 20th century in connection with the study of transport phenomena in polyatomic gases. 
The internal (rotational) degrees of freedom of polyatomic molecules give an additional con- 
tribution to the thermal conductivity compared to the case of a monatomic gas (the energy 
carried by a particle is different) and for rapid changes in the volume causes a new dissipa- 
tive process (described by the bulk viscosity). 

In the past 50 years, because of the development of chemical kinetics, interest in rota- 
tional relaxation has increased. Analysis of the products of exothermal reactions has shown 
that in many cases they have excess rotational energy. For example, direct measurements of 
the radiation intensity of OH radicals in oxygen acetylene flares give a "rotational tempera- 
ture" much higher than the temperature of the flare. Because of progress in experimental ul- 
trasonic methods, frequency regions became accessible in this period which permitted the 
study of rotational relaxation in gases. 

However, the greatest development of rotational kinetics came in the 1960s and 1970s 
with the wide use of lasers in physics and chemistry. The creation of lasers using vibra- 
tional-rotational transitions demanded a deeper study of rotational kinetics. The use of 
lasers in physical-chemistry experiments for the first time allowed the selection of mole- 
cules with a selectivity that was unobtainable earlier and allowed the detection of molecu- 
lar states with very high sensitivity. This opened up new possibilities in the theoretical 
and experimental study of rotational nonequilibrium. 

2. Characteristic Relaxation Time of the Average Rotational Energies 

Of the different forms of internal energy (rotational, vibrational, electronic), the ro- 
tational energy is distinguished by the small magnitude of the quantum (for the lower levels). 
For example, in diatomic molecules the distance between the neighboring rotational levels 
with quantum numbers j + 1 and j is 2Be( j + i) where the rotational constant B e is 0.053~ 
for J2, 0.357=K for C12, 2.86~ for N2, 15.2~ for HCI, and 86.6~ for H2. 

The small magnitude of the rotational quantum implies that the exchange of energy be- 
tween the translational and rotational degrees of freedom (RT exchange) in molecular colli- 
sions can be treated using classical mechanics and the quantum rotational energies can be 
neglected. 

To estimate the rotational relaxation time TRT we use the expression 

+ R r  ~ +0 -- (i) 
AE~ 

Here  zo i s  t h e  a v e r a g e  t i m e  o f  a f r e e  p a t h  ( t h e  c o l l i s i o n  t i m e ) ,  E~ i s  t h e  e q u i l i b r i u m  v a l u e  
o f  t h e  r o t a t i o n a l  e n e r g y  p e r  m o l e c u l e ,  AER i s  t h e  a v e r a g e  e n e r g y  t r a n s f e r r e d  i n t o  t h e  r o t a -  
t i o n a l  d e g r e e s  o f  f r e e d o m  i n  RT e x c h a n g e  p e r  c o l l i s i o n .  

E q u a t i o n  (1)  h a s  a s i m p l e  p h y s i c a l  i n t e r p r e t a t i o n .  Suppose  a f t e r  one c o l l i s i o n  t h e  
m o l e c u l e  a c q u i r e s  (on a v e r a g e )  an e n e r g y  AER, t h e n  to  a t t a i n  t h e  e q u i l i b r i u m  v a l u e  o f  t h e  e n -  

O e r g y  o f  an i n i t i a l l y  u n p e r t u r b e d  m o l e c u l e ,  ER/AE R c o l l i s i o n s  a r e  r e q u i r e d  on a v e r a g e  and 
t h i s  c o r r e s p o n d s  t o  t h e  t i m e  T o E ~ / ~ R .  

For  q u a l i t a t i v e  e s t i m a t e s  t h e  a b s o l u t e  v a l u e  o f  t h e  r o t a t i o n a l  r e l a x a t i o n  t i m e  i s  n o t  
o f  i n t e r e s t ,  b u t  r a t h e r  t h e  o r d e r  o f  m a g n i t u d e  of  t h e  r a t i o  o f  t h e  r o t a t i o n a l  and t r a n s l a -  
t i o n a l  relaxation times. 
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Fig. i. Collision of an atom with the rotator. 

In analogy with ~RT, the translational relaxation time ~TT can be defined as 
E$ 

TTT = T O - -  , 

AEr 

where  E~ i s  t h e  e q u i l i b r i u m  v a l u e  o f  t h e  t r a n s l a t i o n a l  e n e r g y  p e r  m o l e c u l e ,  ~ T  i s  t h e  a v e r -  
age  e n e r g y  t r a n s f e r r e d  i n t o  t h e  t r a n s l a t i o n a l  d e g r e e s  o f  f r e e d o m  of  t h e  m o l e c u l e  p e r  c o l l i -  
s i o n .  Since E~ % E~, we have TRT/~TT ~ AET/AER. 

In order to estimate the ratio AET/A--~R we consider a gas in which the relaxing diatomic 
molecules BC (modeled as rigid rotators) are a weak impurity in an equilibrium monatomic gas 
A. We assume for simplicity that at the initial instant of time the rotational and transla- 
tional energies of the rotators are equal to zero. Then in each collision of a rotator with 
an atom of energy AER(v ) is transferred into the rotational degrees of freedom and an energy 
AET(V ) is transferred into the translational degrees of freedom. AE T and AE R are obtained 
from AET(V ) and AER(v) by averaging over a Maxwellian distribution of incident particles A, 
hence 

AEr AET(v) 
AEn AER(v) 

In order to determine AET(v)]AER(v) we consider the collision of an atom (mass mA) with 
the rotator BC (mass mBC = 2mB) and we choose the situation most favorable for the transfer 
of rotational energy. This is the case where the incident atom moves along a line perpendic- 
ular to the axis and passing through one of the atoms of the rotator (see Fig. i). We will 
assume that before the collision the angular velocity m and the velocity va of the center of 
mass of the rotator are equal to zero, and that the velocity of the incident atom is vx. We 
denote the corresponding quantities after the collision by vx', v2' and m' 

We express the ratio AET/AE R in terms of v2', ~' and the moment of inertia about the 
center of mass of the rotator (J = 2mB(d/2)2): 

AER 2 d~m '2 
For this collision geometry, AET/AE R can be determined with the help of the two conservation 
laws: momentum 

mArl= mArl + 2mBv2 

and angular momentum (with respect to the center of mass of the rotator) 

mAVld/2--mAvld/2~ Jo)'. 

I t  t h e n  f o l l o w s  t h a t  v 2 '  = d ~ ' / 2 .  T h e r e f o r e ,  f o r  t h i s  c o l l i s i o n  g e o m e t r y  we h a v e  

AET(V) 1 
AE~(v) 

and hence ~RT = ~TT- 

Since not all collisions are favorable in exciting the rotational degrees of freedom, 
we will actually have TRT ~ ~TT. 

For an arbitrary distribution of colliding particles, the conservation laws are insuffi- 
cient to determine the energies transferred into the translational and rotational degrees of 
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freedom and it is necessary to solve the equations of motion, which involve the intermolecu- 
lar interaction potential. In this approach a new parameter appears in the problem, the ra- 
tio of the duration of a collision TCT to the period of rotation -i and ~TCT determines 
the magnitude of the transferred energy. 

The parameter ~CT is known in the literature as the adiabatic parameter (adiabatic fac- 
tor) or Mossi parameter. In a quantum treatment ~ is replaced by AE/h, where AE is the en- 
ergy difference of the states of the transition. 

For molecular collisions accompanied by rotational transitions the adiabatic parameter 
is much less than unity for most molecules. An order of magnitude estimate is TCT ~ a/~, 
where a is the range of the intermolecular interaction (a ~ I0 -8 cm) and ~ is the average 

AE B~ 
velocity of the molecules (~ ~ 3"104 cm/sec) so that TCT ~ 0.3-10 -la sec. Then _ 

h h 
2(j + i). For B e ~ I=K and J = i, AE/h~5-]011 see -I therefore AETc~/h~015 An increase of 
temperature weakly affects the magnitude of the Mossi parameter in transitions with rota- 
tional energies in the thermal region since then the average value of j and the velocity are 
proportional to ~r A molecular collision under these conditions is instantaneous and non- 
adiabatic and can be correctly described (in a qualitative sense) by the above method based 
on the conservation laws. 

Since the translational relaxation time is of order ro (for comparable masses of the 
colliding particles we have A'E T ~ AE~) then we also have that TRT ~ ~o. Therefore in nonadi- 
abatic collisions RT exchange occurs relatively easily after a time of the order of the col- 
lision time. 

For light molecules (H=, HD, Da) or for molecules with large rotational quantum numbers, 
the adiabatic parameter can be of order unity, or even much larger, In this case the colli- 
sions are approximately adiabatic and the energy transferred into the rotational degrees of 
freedom is small. Indeed, for adiabatic collisions (o~cT>>�94 the rapidly rotating molecule 
is like a structureless particle with a spherically symmetric intermolecular potential, and 
there is no RT exchange in the collision of an atom with such a particle. 

Consequently for light molecules with high values of the rotational quantum numbers the 
rotational relaxation time will be significantly larger than the translational relaxation 
time. For example, at room temperature the rotational relaxation time in H2 is about 350 
times the collisional, and in Du it is about 200 times larger. 

The above estimate of the rotational relaxation time is qualitative and serves to dis- 
tinguish the time scale in which it is necessary to take into account rotational nonequilib- 
rium. In the solution of specific problems where the scale of rotational nonequilibrium is 
already determined, it is usually necessary to find the nonequilibrium distribution function 
of the rotational energies. This is especially necessary for kinetic studies. 

3. Nonequilibrium Rotational Energy Distribution Function 

Gas-kinetic Equation for the Population Densities. The most widely used method of de- 
scribing rotational relaxation is based on the gas-kinetic equations for the population dens- 
ities of the rotational levels. We first consider a gas in which the relaxing diatomic mole- 
cules (rotators) are a weak impurity in a monatomic gas. We also assume that the rotational 
relaxation time is much larger than the translational time. Then rotational relaxation oc- 
curs for a Maxwellian distribution of velocities for all particles and therefore the system 
of equations for the rotational population densities can be written without the equations 
for the velocity distribution functions. 

From the balance of the number of particles in each rotational level we can write a sys- 
tem of gas-kinetic equations for the population densities Nj of the rotational levels: 

dN~ 
- - Z ( E P u N i - - E P j i N j ) ,  i, ] = 0 ,  1 , . . .  (2)  

dt 
Here  P i j  i s  t h e  p r o b a b i l i t y  o f  t h e  r o t a t i o n a l  t r a n s i t i o n  i ~ j i n  one  c o l l i s i o n  o f  t h e  m o l e -  
c u l e  w i t h  an i n e r t  a t o m ,  a v e r a g e d  o v e r  t h e  M a x w e l l i a n  v e l o c i t y  d i s t r i b u t i o n ,  and Z i s  t h e  
number o f  m o l e c u l e - a t o m  c o l l i s i o n s  p e r  u n i t  t i m e .  

The s y s t e m  of  e q u a t i o n s  (2)  t a k e s  i n t o  a c c o u n t  o n l y  RT e x c h a n g e  i n  c o l l i s i o n s  w i t h  
a t o m s ;  c o l l i s i o n s  o f  m o l e c u l e s  w i t h  each  o t h e r  a r e  n e g l e c t e d  b e c a u s e  o f  t h e i r  s m a l l  c o n c e n -  
t r a t i o n .  
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Since a sufficiently accurate and general theoretical expression for Pij is unknown, 
normally semiempirical formulas are used. The most widely used expressions are the exponen- 
tial and inverse power-law forms [1-3]: 

Pij = Go exp (-- e I [ A E  u [ / kT) ,  

P u = G ,  ( k T  ) r 
I AE~jl ' (3) 

where ~, and ua are empirical constants, AEij = E i -- Ej, and the factors Go and G, take into 
account the degeneracy of the rotational levels and the condition of detailed balance. 

The expressions (3) have an obvious physical interpretation. They show that the transi- 
tion probability depends mainly on the transition energy IAEij[ and decreases as the transi- 
tion energy increases. 

An obvious deficiency of (3) is the necessity of empirical determination of thecon- 
stants in these formulas. This is possible only in limited intervals of temperature and 
quantum number since in actuality the dependence of the transition probability on li-jI is 
more complex [4-7]. 

An analytical solution of the system (2) with the probabilities (3) is unknown, and it 
is unlikely that one could be obtained. There are, however, a large number of papers de- 
voted to the numerical solution of (2) for specific problems. For example, rotational relax- 
ation in jets was studied in [3, 8, 9]. 

Although numerical calculations are highly important in the description of specific 
cases, they are unsuitable in bringing out the general features of relaxation processes be- 
cause of the large number of parameters in the problem. A way out of this difficulty is the 
use of the diffusion approximation to the system of equations (2), as this approximation ad- 
mits an analytical solution. 

Diffusion Approximation. As indicated above, for most molecules we have kT >> !AEij I 
for reasonably small i and j. In this case one can ignore the quantum rotational energies 
and describe the rotational relaxation process in terms of a classical distribution function 
f(e, t), which is the distribution of molecules in the space of the rotational energies c at 
the instant of time t. For function f(e, t) we obtain a single integrodifferential equation 
of the Smolukhovskii type in place of the system (2). It can be transformed into a diffu- 
sion equation of the Fokker--Planck type if the rotational transition probabilities go to 
zero with increasing energy transfer sufficiently rapidly. 

Hence in place of the system (2) we obtain the equation 

at - as as k-- -T-  f ' (4) 

where ~"~ is the mean square energy transferred into the rotational degrees of freedom per 
collision and to is the time duration corresponding to a mean free path of the rotator in 

the inert gas. 

Actual calculations are most simply carried out in two limiting cases: adiabatic colli- 
sions with probabilitieff determined by relations of the type (3); and nonadiabatic colli- 
sions where the mass of an inert atom is much less than that of a rotator. In the first 
case ~ = const [i0] and in the second ~ = 2bToe [ii]. 

For adiabatic collisions (4) takes the form 

af 
Ot 

and for nonadiabatic collisions 

of 
at 

w O~ ~- leT O~ / ' 

cos , cos " k T  , 

Here T = 2 T o  ( k T ) 2 , b  -- 32 m n k T Q l ~  1], where m and M are the mass of the atom and rotator, re- 
~-~- 3 M 

spectively, (m ~ M), n is the number density of the atoms, and ~ )  are the gas-kinetic 
collision integrals. For hard spheres with a collision diameter given by o = (ol + 02)/2, 
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where o~ and o2 are the diameters of the rotator and atom, respectively, we have b = 
m kT 

, where ~0 :=(2no F 2 n k T / m  )-L 
M % 

The solution of (5), subject to the boundary and initial conditions 

~ nr ( 'q -I S-L--'I = 0 ,  [(s, t:---O)=~p(s) 
\ o e  k T  I ~=o, 

has the form [i0] 

T 
{ (~, t )=  ((~(s, s', O q~(s')ds', 

b 

where the Green's function is given by 

8 
3 

(7) 

(8) 

G(s, s', t) - - - -kT '  12 / - -~ - - )  [ ~t ,,-~/2,i exp [ ( _  - -  + - -  S T Tt ) 2 ~ ] +  exp [ ( - -  s+e'kT ~ ~t " ) 2 ~ l e x p ( s ' / k T ) }  . 

+ 2k-----T~ kT �9 ~ V T J  exp(--s/nr); 

2 ,f 
�9 (z) -- ~ K  ! exp (-- V") dy 

and r is the error function. 

The solution (8), (9) has a simply physical interpretation. If we choose the initial 
distribution as a delta function ~(s)~N6(s--s0),then the solution f(E, t) = NG(e, Eo, t) 
will describe tile transition of particles from the energy region about the initial value ~o 
(the first term in (9)) into particles with distribution asymptotically approaching the 
Boltzmann distribution (the second term in (9)). 

The solution of (6) with the analogous boundary and initial conditions is written as a 
series of Laguerre polynomials L n [ii]: 

( ( ) f (s, t) = Xc~ exp - -  n--!-t L~ exp _ e_2__ (10) 
~ kT ' 

where 

kT b ~ b 
However, here we are more interested in a particular solution of (6), where we assume that 
the initial condition is given as a Boltzmann distribution with a temperature To different 
from the reservoir temperature. This case occurs for expansions in nozzles or in a shock 

N s 
wave front. In this case ~(s)=~0exp(--~0), and 

[(s, t) N exp ( s ) (ii) 
ko(o \ ko(t) , '  

where 

dO 0 - - 7 "  
- -  ( 1 2 )  dt T t 

S o l u t i o n  (11) means t h a t  t he  p r o c e s s  of  e s t a b l i s h i n g  e q u i l i b r i u m  passes  th rough  a s e -  
quence of Boltzmann d i s t r i b u t i o n s  of d i f f e r e n t  t e m p e r a t u r e s .  In t h i s  case  we say t h a t  (6) 
has canonical invariance. Another property of (6) is related to canonical invariance. If 
we multiply (6) by e and integrate over all e then we obtain for the average rotational en- 

ergy per unit volume s=fef(e,t)de the simple relaxation equation 
0 

d[ _ 7-- s 0 (13) 
dt ~1 

where so = kT. 
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Equation (13) is often used in gasdynamical calculations. We note that (13) follows 
directly from (12). 

We emphasize that only (6) possesses the property of canonical invariance. Equation 
(5) does not preserve the form of the Boltzmann distribution and the simple relaxation 
equation (13) does not follow from it. 

We can make the following conclusions from the above analytical treatment of rotational 
relaxation : 

I. The process of rotational relaxation is only weakly sensitive to changes in the ro- 
tational transition probabilities Pij. Rathe_r_r it is determined by certain integral charac- 
teristics such as the diffusion coefficient A2/2To. 

2. The simple relaxation equation (13) for the average rotational energy and the prop- 
erty of canonical invariance, which allows one to introduce an instantaneous rotational tem- 
perature, are only valid for special systems of the Rayleigh gas type with nonadiabatic col- 
lisions. In general one cannot use equation (13). 

These conclusions are supported by numerical calculations for specific cases (see [8] 
for example); however, the analytical treatment adds an element of generality to these numer- 
ical results. 

Joint Translational--Rotational Relaxation. The preceding treatment was limited by the 
condition that the rotational relaxation time be much larger than the translational relaxa- 
tion time. This is the case of most interest in practical applications, since the duration 
of rotational relaxation provides sufficient time both for the removal of energy (for exam- 
ple by laser generation between rotational levels) and for the operation of the relaxation 
process itself. But there are several problems (rotational distributions in shock waves or 
high-frequency ultrasonic dispersion are two examples) in which rotational and translational 
relaxation occur simultaneously. 

An analytical treatment of translational--rotational relaxation was carried out in [ii], 
where the problem was solved in the diffusion approximation for a mixture of heavy rotators 
and light, monatomic particles. In this case the processes of translational and rotational 
relaxation are independent, although they have a single characteristic time. Independence 
of simultaneously occuring relaxation processes is the exception rather than the rule. The 
numerical results indicate [12] that the characteristic rotational and translational relaxa- 
tion times and the form of the nonequilibrium distribution functions of the energies associ- 
ated with the translational and rotational degrees of freedom depend on the initial transla- 
tional-rotational energy distribution. We note that even when there is simultaneous transla- 
tional and rotational relaxation the synchronism of the rates of the two processes will be 
disturbed for the high rotational levels, which are populated or depopulated at a slower 
rate than the rate of translational relaxation. 

Resonant Vibrational--Rotational Exchange. Recently, there has been much interest in vi- 
brational and rotational relaxation under conditions of effective vibrational--rotational en- 
ergy exchange (VR exchange). Numerous calculations of the probabilities of VR exchange in 
collisions of inert gas atoms with hydrogen-containing molecules (see [13-15] as examples) 
have shown that the largest probability occurs for transitions close to the resonance condi- 
tion AEvj -~ v'j' = Evj-Ev'~'. As an example, such transitions for H= are (v' = I, j' = 6)- 
(v = 0, j = 8), (v' = I, j" =8)-(v = 0, j = I0), (v' = i, j' = 10)-(v = 0, j = 12) [16]. 
Resonant VR transitions also dominate for the OH radical at large j [14]. 

Intense VR transitions affect the kinetics of vibrational and rotational relaxation. 
For example, upon excitation of the vibrational levels, a succession of RT and VR exchanges 
is more effective than the usual vibrational--translatlonal exchange. 

In turn, the lagging RT exchange in the upper rotational levels for an excess occupa- 
tion of the vibrational levels can lead to the formation of a population inversion in the ro- 
tational levels (because of intense VR exchange) with subsequent laser generation in the ro- 
tational transitions. Apparently this mechanism explains the formation of rotational inver- 
sions and laser generation in purely rotational transitions in OH radicals formed in vibra- 
tionally excited states in the reaction O(~D) + H2 [17, 18]. 

The cause of the formation of population inversions in the rotational levels in the 
presence of intense VR exchange is the difference in relaxation times of the rotational ener- 
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gies for the lower and upper rotational levels. Suppose that a nonequilibrium distribution 
of vibrational energies is formed in a diatomic gas under the action of some effect such as 
a rapid expansion or a chemical excitation. Then rapid VR exchange synchronizes the rota- 
tional distribution of the upper levels with the nonequilibrium vibrational distribution. 
But rapid RT exchange synchronizes the rotational distribution of the lower rotational lev- 
els with a Maxwellian distribution. RT exchange is more effective for the upper rotational 
levels than VR exchange, therefore the excess population density induced because of VR ex- 
change cannot be eliminated with RT exchange. For strong enough vibrational excitation at 
low translational temperatures a rotational inversion is immediately induced. 

The problem of the formation of a rotational inversion under resonant VR exchange was 
solved analytically in [19] in the diffusion approximation. A numerical calculation of rota- 
tional inversion for an expanding Ha--HF mixture in a nozzle was considered in [20, 21]. 

Quasistationary Distributions. In the solution of problems of rotational relaxation in 
conditions of rapid VR exchange, quasistationary distribution functions of the rotational en- 
ergies are encountered. The quasistationary distribution functions can be most simply ob- 
tained by considering the solution of (6) with a delta-function source of particles 

0---t- -- 0s ~ -~- -k-T- f lj- ~]6(e -e,). (14) 
J 

This equation describes rotational relaxation in a system in which N particles are sup- 
plied with rotational energy eo per unit time and per unit volume. A constant source of par- 
ticles models VR exchange in a chemical reaction, or in some other type of excitation. 

The solution of (14) has the form [22]: 

~(e, t)---- 1 e_e/hrX r ( ~ )e_Vt/r ~ 1 e_</kr (r + ~]t)+ 
k-----T--- v : l  ~ ! k T  ' 

+ (Co) ( e )  ,,,., (15) -~ kT q e--~/hT ~--~ L v ~ L~ ~ ( l - - e -  ), 
V= l 

where  Lv(x)  a r e  t h e  L a g u e r r e  p o l y n o m i a l s  and ~z, = .  [(a, t = 0)L~ - - ~  de. 
0 ' 

The s o l u t i o n  (15) d e s c r i b e s  t h e  a p p r o a c h  t o  a Bot tzmann d i s t r i b u t i o n  o f  t h e  i n i t i a l  p a r -  
t i c l e s  ( e x i s t i n g  a t  t = O) and t h e  p a r t i c l e s  p ro d u ced  by t h e  s o u r c e .  

For  t >> "r, t h e  s o l u t i o n  (15) can be r e w r i t t e n  i n  t h e  form 

i 11 exp(--~/teT) E 1 L,(~./kT) L,(%/kT). (16) 1 exp ( - -  ~/kT) ( f (~:, O)de + ~]t) + --kT / (e, t )  - k T  o 
V: l %~ 

We see from (16) that when t >> ~ the solution of (14) becomes quasistationary and can 
be represented as a combination of two terms. The first describes the particles which are 
characterized by an equilibrium Boltzmann distribution at time t. The second term describes 
a stationary but nonequilibrium distribution of particles which have not yet reached equilib- 
rium. This second term, sometimes called the excitation function, depends on the strength 
of the source of particles. 

Hence in general the quasistationary distribution can be represented as an equilibrium 
distribution function (with a variable number of particles) and an excitation function which 
is independent of the initial conditions but which is determined by the instantaneous value 
of an external parameter (in this case the strength of the source). In this sense the quasi- 
stationary distribution gives a condensed description of relaxation in which the initial con- 
ditions are forgotten and the distribution function is synchronized with the external parame- 
ters. Finding quasistationary distributions is a much simpler problem than obtaining the 
general solution. Moreover, the quasistationary distributions play the dominant role in ki- 
netics in physical chemistry. 

Rotational Relaxation in Single-Component Systems~ Up to now we have only considered 
the rotational relaxation of rotators which are a weak impurity in a monatomic gas. An anal- 
ysis of rotational relaxation in a single-component system requires a treatment of both RT 
processes and RR exchange in molecular collisions, where by RR exchange we mean an exchange 
of rotational energy. There are very few calculations of RR exchange probabilities in the 
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literature (see [23, 24]). The values of the probabilities [23, 24] and diffusion coeffi- 
cients [25] which have been obtained are not suitable for the solution of the gas-kinetic 
equations. But the effect of RR exchange on the process of rotational relaxation can be un- 
derstood as follows. For the low rotational levels the probabilities of RR and RT exchange 
are comparable. Since, however, the rate of approach to a Boltzmann distribution is large 
for the low levels, RR exchange changes almost nothing in the kinetics. For the upper rota- 
tional levels the probability of RR exchange is larger than the probability of RT exchange. 
However RR exchange is ineffectual overall, since there are only a small number of particles 
in the upper levels and collisions between them are improbable. RR exchange is most impor- 
tant in the intermediate energy range (thermal and above). Here RR exchange can lead to the 
establishment of a Trinor distribution of rotational levels [I]. Also RR exchange can be im- 
portant for the synchronization of the rotational distributions in different vibrational lev- 
els. In exothermal chemical reactions such as in the mixture H2 + F2, rotationally excited 
HF molecules occur in various vibrational levels. Rapid RR exchange can synchronize the non- 
equilibrium rotational distribution until vibrational relaxation occurs [26]. 

Polyatomic Molecules. The equation for the population densities (2) or the diffusion 
equations (5) and (6) are valid for linear molecules or spherical top molecules whose rota- 
tional energies depend only on a single quantum number. For symmetric or slightly asymmet- 
ric top molecules the rotational energy depends on two quantum numbers: j and K (the quan- 
tum number K characterizes the component of the angular momentum of the molecule along the 
symmetry axis of the top). In this case rotational relaxation must be described by a distri- 
bution function dependent on the quantum numbers j and K. In the diffusion approximation 
this process can be thought of as a two-dimensional diffusion of particles with respect to 
levels j and K (with different diffusion coefficients). Rotational relaxation has not been 
considered in this formulation. The possibility of creating population inversions in the K 
levels was discussed in [27]. An experimental study of rotational relaxation of water mole- 
cules (asymmetric top) was carried out in [28]. 

4. Rotational Nonequilibrium Processes in Physical Chemistry 

Rotational Relaxation of the Products of a Chemical Reaction. A nonequilibrium rota- 
tional distribution in hydrogen halides formed in reactions of halogen atoms with water mole- 
cules was observed in [29]. This was one of the first experiments studying a nonequilibrium 
distribution function of rotational energies. Subsequently reactions involving halogen at- 
oms have been studied repeatedly, since they are widely used to create population inversions 

in chemical lasers. 

In experiments [29] on infrared luminescence of HCI, the existence of a biomodal distri- 
bution of molecules over the rotational levels was observed. Equation (3) for the RT transi- 
tion probabilities was used to explain these experiments. Equation (5) can be solved analyt- 
ically with the probabilities given by (3). For an initial distribution in the form of a 
delta-function, the solution (as already noted) has the form 

f (8/ t) = NG(e,  %, t). (17) 

The f u n c t i o n  NG ( s ee  (9) )  i s  t he  sum of  two p a r t s :  t he  f i r s t  term i s  i n i t i a l l y  equal  
to N~(e-eo) and the second is initially zero. As time increases, the first term decreases, 
which means that the number of particles with energies near go decreases, and the second 

N 
term increases and approaches the equilibrium distribution ~ exp(--~/kT) Thus the relaxa- 

tion of the initial delta-function distribution can be thought of as a slow spreading of the 
delta-function component with the rapid formation of a Boltzmann distribution of those parti - 
cles which have reached the region of thermal energies. This type of relaxation implies 
that the distribution function of the rotational energies (17) will be biomodal for particu- 
lar times and temperatures [i0, 30]. 

It is important that during the spreading of the delta-function distribution an inver- 
sion of the rotational levels can be maintained over a certain time. The time of existence 
of the inversion is small, but it can be significantly increased. This can be done by using 
a molecular system with a constant source of rotationally excited particles. The rotational 
distribution function is determined in this case from the solution of (5), where a term is 
added to the right-hand side which takes into account the source. If q(e, t) is the number 
of particles produced with energy E per unit time and per unit volume, the solution of (5) 
with the addition of the source has the form 
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[ (e, t ) =  l 'O(s, e', t)~(s')de' q_ dt' (7 (s, s', t - - t ' ) q  (e', t')d~;'. 

For q(% t)  = K t d ( s - s o ) . ( t h i s  corresponds to nonbranching chain r e a c t i o n s )  the time of 
e x i s t e n c e  of the i n v e r s i o n ,  according  to the data  of [31] (see  a l so  [27]) ,  i s  g iven by 
(so >> kT) : 

tin v 1'<2 e~O/hr . ~ T R T .  

Estimates of the maximum inversions attainable in specific cases are given in [31, 27]. 

Loss of Rotational Equilibrium in a Radiating Gas. The interpretation of the molecular 
spectra of nonequilibrium gases (upper atmosphere, interstellar clouds, reacting gases) re- 
quires both a knowledge of the optical transition probabilities and information on the dis- 
tribution functions of the radiating components. If, as is generally true, the distribution 
function of the translation energies is Maxwellian, then the energy distribution of the in- 
ternal (rotational) degrees of freedom can differ significantly from equilibrium, and this 
will naturally affect the radiation intensity. 

Under normal conditions (normal temperature and pressure) the radiation does not signif- 
icantly distort the equilibrium distribution functions because the collision mechanism of en- 
ergy exchange between the different degrees of freedom is so effective that it can reestab- 
lish the equilibrium lost due to radiation. Indeed, the probability of spontaneous emission 
from the first rotational level of CO is A~o = 1.8-10 -7 sec-*, and the inverse rotational re- 
laxation time of CO in Ha at normal pressures is "r~ ~ 108 sec-*. However, the situation 
changes radically when we consider rarefied gases such as dense interstellar clouds which 
are concentrations of molecular hydrogen (with concentrations of i04 cm -3) containing small 
amounts of C, C +, CO, CO + , CH, etc. The temperature in the outer regions of the cloud is 
about 30~ and that of the inner regions is ~IO~ [32]. The relative content of CO in these 
clouds is much larger than that of other diatomic molecules or carbon-containing impurities 
and on average is equal to 0.6-10 -5 . Therefore the most important cooling mechanism in 
these clouds will be the spontaneous emission of CO in rotational bands. At these densities 
and temperatures the inverse relaxation time is 10 -7 sec -~ which is comparable to the proba- 
bility of spontaneous emission. 

Rotational distribution functions in radiating gases were calculated in [33, 34], where 
the nonequilibrium distribution function is found by solving the Fokker--Planck equation 

O[ 0 I -~- ( O[ q__k/__f_l]+ c? I2[3B~p(m) O[ 3A1~ e2/~]. (18) 
a--V-- ae , - 5 7 , .  -57-  + 

The first term on the right-hand side of (18) describes the collisional exchange of energy, 
as in (4). The second term characterizes the effects of external electromagnetic radiation 
(with spectral energy density ;)(to) and spontaneous emission on the distribution function. 
In (18) B = 2~a/3h a, where ~ is the dipole moment and B e is the rotational constant of the 
rigid rotators modelling the CO molecule. 

The stationary distribution is obtained from (18) for p(~) = 0 and Aa/2To = const and 
has the form 

N Cexp[  e A,o~kT ( e , a _ _ _ _  " _ _ .  _ ! , (19) 

[(e)-- B~ [. hT Bo leT ] ] 

where i = 2% (kT)~ 
A z 

We see from (19) that self-radiation distorts the equilibrium distribution and leads to 
the depletion of the upper rotational levels. We note that in a gas of radiating oscilla- 
tors spontaneous emission does not distort the equilibrium form of the distribution, but only 
leads to a lowering of the vibrational temperature of the oscillators in comparison to the 
temperature of the heat reservoir [i]. 

Rotational Nonequilibrium in Expanding Gas Jets. Successes in the creation of gasdynam- 
ical lasers using vibrational--rotational transitions has led naturally to the question of 
the creation of inversions of the rotational levels in expanding gas jets. In a series of 
experiments carried out from the early 1970s [28, 36, 37] it has been established that the 
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rotational energy distribution in an ultrasonic jet of expanding gas is a nonequilibrium dis- 
tribution. Although population inversions of the rotational levels were not observed in 
these experiments, the study of rotational relaxation through the rotational distribution in 
an ultrasonic expansion of gas has been demonstrated as an important technique and has ob- 
tained a wide following. 

A distinct advantage of this method is the possibility of studying rapid rotational re- 
laxation processes under stationary conditions. The rapid decrease of density in the jet 
with increasing distance from the nozzle section, and consequently the decrease in the fre- 
quency of collisions, leads to a slowing of the relaxation processes such that the rota- 
tional energy distribution cannot follow the decreasing translational temperature. By ob- 
serving experimentally the change of state of the gas from thermodynamic equilibrium in the 
precombustion chamber of the nozzle to a nonequilibrium state at a certain distance away, we 
can obtain information on the rotational relaxation rates constants. In actual experiments 
[38] electron and molecular beam methods are used to measure the gas density, population den- 
sities of the rotational levels, and the translational velocity distribution function of the 
molecules on the axis of the free gas jet, which is expanding in a vacuum. 

Applied to rotational relaxation, one of the fundamental experimental results in jets 
is that for low enough impact temperatures the effective rotational temperature of the mole- 
cules is higher for the upper rotational levels than for the lower levels. Repopulation of 
the upper rotational levels and depopulation of the lower ones in expanding jets is ex- 
plained qualitatively by the hypothesis that the rotational distribution is not able to fol- 
low the rapidly varying temperature of the translational degrees of freedom. Because of the 
differing rotational relaxation rates of the upper and lower levels, the degree of freezing 
of the rotational energies is different. The rotational distribution of the upper levels is 
closer to the equilibrium distribution in the chamber than that of the lower levels. 

Numerical solutions of the gas-kinetic equations (2) for the population densities of 
the rotational levels in expanding jets [37, 38] (see also [39, 40]) have confirmed the re- 
population of the rotational levels and agree well with experiment. However in the opinion 
of the author of [37] "this description cannot be considered to be a theoretical model, but 
a compact summary of the experimental data." This conclusion is based primarily on the fact 
that the experimental data can be described satisfactorily by different expressions for the 
rate constants if the free parameters are chosen appropriately. 

A series of calculations of nonequilibrium distribution functions in expanding gas jets 
were carried out in [41], where the nonequilibrium distribution functions of the rotational 
energies and translational velocities were determined from the solution of the Boltzmann gas- 
kinetic equations. (The solution can be obtained by assuming that the macroscopic parame- 
ters vary over a time T much larger than the characteristic times of translational To and ro- 
tational TRT relaxation and under the condition that the rotational transition probabilities 
decrease rapidly with increasing energy transfer. For jets with steady-state (or slowly 
varying in time) hydrodynamical flow, the rotational distribution function has the form 

-Be f~J+~'{ [ I~ Be \~ Jl 
Nj- -  kTB~ (2] + l )  e k--F 1 - - 2  X_Rr_T sgn gradT \ kT ] (j + 1),) - -  2 ., (20) 

where ~----- , and v and T are the velocity and temperature of the medium at point ro 

Comparison of the distribution (20) with the equilibrium distribution of rotational en- 
ergies at a temperature equal to the gas temperature of this radial distance shows that in 
the distribution (20) the lower levels are depopulated and the upper ones repopulated. In 
addition (and most importantly) for certain values of the ratio TRT/r a population inversion 
is formed in the upper rotational levels. 

The formation of a population inversion can be explained by the difference in relaxa- 
tion times for the lower and upper levels. Since the relaxation time of the population den- 
sities is large for the upper levels, rotational relaxation under conditions of rapid cool- 
ing implies slow decrease of the population densities of the upper levels with the simultane- 
ous rapid formation of the Boltzmann distribution corresponding to the particles of the me- 
dium at the lower levels (see the distribution (17) and its analysis). Therefore in the re- 
laxation stage, the upper levels will be repopulated since their population densities will 
differ only slightly from the equilibrium values corresponding to a higher temperature (such 
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as the temperature in the chamber) while the lower levels will be depopulated. In the low- 
temperature end of the distribution (i.e., the lower levels) there may be fewer molecules 
than in the neighboring high levels where there is a high-temperature distribution. Hence, 
the theory predicts the possibility of a population inversion of the rotational levels in ex- 
panding jets. 

Rotational Relaxation in Shock Waves. A shock wave is considered in hydrodynamics as a 
surface of discontinuity, but physically it is actually a layer of finite thickness separat- 
ing two states of thermodynamic equilibrium (before and after the wave). Over the extent of 
this layer there is a transition of the distribution functions from one equilibrium state to 
the other. If the translational and rotational relaxation times are of the same order of 
magnitude, the rotational distribution function evolves in the background of a non-Maxwell- 
ian velocity distribution (which also deteriorates). This explains the interest in rota- 
tional relaxation in shock waves. 

The rotational distribution of Na in a shock wave propagating in pure nitrogen was stud- 
ied in [42, 43, 35] using electron-beam induced fluorescence. It was shown in [42] that at 
small Mach numbers the rotational distribution is close to a Boltzmann distribution and the 
rotational temperature profile follows the density profile. For high Mach numbers the rota- 
tional distribution varies smoothly with increasing j from a Boltzmann distribution with a 
temperature equal to that in front of the shock wave to another with a temperature equal to 
that behind the shock wave, and the "rotational temperature" profile leads the density pro- 
file [42, 43]. 

Numerical calculations of the rotational distribution in a shock wave in N2--Ar mixtures 
with probabilities of the form (3) were carried out in [9]. In the averaging of the transi- 
tion probabilities over velocity, the Mort--Smith bimodal distribution [44] was used. The bi- 
modal velocity distribution in a shock wave was written as a linear combination of equilib- 
rium Maxwellian distribution functions [44] describing the equilibrium state of the gas be- 
hind and in front of the shock wave. The weighting factors in front of the Maxwellian dis- 
tributions are functions of the distance from the center of the shock wave and were varied 
between zero and unity in such a way as to insure the correct asymptotic limit in front of 
and behind the shock wave front. 

The observed growth of the population densities of the rotational levels with large j 
in the front part of the shock wave can be explained by the effect of hot molecules in the 
bimodal distribution insuring the effective occupation of the high rotational levels. 

It is interesting to note that the general forms of the rotational distribution with 
low rotational temperatures for small j and high rotational temperatures for large j are 
identical both for rapid expansion and for rapid contraction. In analogy with the rapid ex- 
pansion in a jet one also expects the formation of rotational inversions in shock waves. 
However this has not been discussed in the literature. 

Rotational Relaxation upon the Absorption of Laser Infrared Radiation by Molecular 
Gases. Upon the absorption of intense infrared radiation in the vibrational--rotational tran- 
sitions vojo + vlj~, the system is observed to clear, which corresponds to a decrease in the 
absorption coefficient. Physically this can be explained by the absorption of infrared radi- 
ation with WTRT >> 1 (W is the probability of induced transitions under the action of the 
radiation) equalizing the population densities of the levels vojo and vxj~. The further ab- 
sorption of infrared radiation in this transition (which determines the rate of vibrational 
excitation) is limited by the rate of inflow of molecules into the level vojo and the tran- 
sition rate from the level vlj~ due to rotational relaxation. 

When WTRT >> 1 the transition is always effective, therefore it can be assumed that the 
population densities of the rotational sublevels of the lower and upper vibrational states 
(no v and n~') are approximately equal; no' ~-- nx' = n'. If we let No and Nx be the total 
population densities of the lower and upper vibrational states, then we can write the follow- 
ing system of relaxation equations for No and Nx: 

--Let = (21) 
dt dt 

where L~ '~) are collision operators determining the rate of RT relaxation for the lower and 
upper vibrational levels. In estimating the maximum rate of vibrational excitation, the op- 
erators L~ 'I) are usually represented according to the strong collision model [45]: 
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TRI" T,R y 

where q is the relative equilibrium fraction of molecules in the rotational sublevel and we 
assume that qjo ~qjl = q" 

Since No + N, = const we have n1~ ~(N0+NI) and the system (21) can be rewritten as: 

dN~ - -  q ~  (.,Vo --- :Vj), d,,V~ __ -'7. (N o - -  N~). ( 2 2 )  
dt 2 ~ r  dt 2 ~ r  

We see from (22) that the rate of excitation of the upper vibrational level cannot exceed 

q/2TRT. 

For diatomic molecules the maximum value of q is reached at the level ]ma• e 
Typically Be ~ (0.i-i0) cm -* and T = 300~ and we have qmax = 0.01-0.I. The experimental 
values of q (especially for polyatomic molecules) are significantly higher than the theoreti- 
cal ones and are of order unity [46]. A possible cause of the disagreement between theory 
and experiment is that the strong collision model underestimates the rate of rotational re- 
laxation. 

The rate of vibrational relaxation upon the absorption of infrared radiation was calcu- 
lated in [31] in the diffusion approximation for the operators LRT (Kdif) , where it was 
shown that 

] 
~if / (q/P-TRT)~ 

q 

This result contradicts the conclusion of [45] that vibrational heating is ineffective until 
the beginning of vibrational--translational relaxation. We note that this conclusion is only 
correct in the strong collision model. Hence the widely accepted view that the strong colli- 
sion model predicts the largest rotational relaxation rate is incorrect. In the strong col- 
lision model the relaxation channels of the population densities of the discrete rotational 
sublevels are independent. In the other models the relaxation channels from discrete levels 
are coupled and there exist several paths for the relaxation of the population densities. 
This evidently also explains the faster relaxation in the other models. 

5. Conclu s ion 

As noted above, the study of nonequilibrium process, including rotational relaxation, 
began in the beginning of the present century and has attracted further interest in the suc- 
ceeding decades. The fundamental causes stimulating the development of nonequilibrium kinet- 
ics have been the needs for the solutions of both basic and applied problems in the study of 
a nonequilibrium gas as a special state of matter. Examples are problems in nonequilibrium 
acoustics, physical gas dynamics, and laser physics. The solution of some problems has led 
to new ones; however the solution of the fundamental problems have left their mark. In mo- 
lecular acoustics a new direction has been developed: acoustic spectroscopy [47]. Physical 
gas dynamics has introduced into practice a new method of studying high temperature proc- 
esses: the method of shock tubes [48, 49]. The introduction of lasers in physics and chem- 
istry has produced well-known consequences. At the present time the study of nonequilibrium 
processes, particularly rotational relaxation, is stimulated by the need to solve two funda- 
mental problems. The first is the creation of lasers in the far-infrared region, including 
lasers using purely rotational transitions. The second is the development of the technology 
of controlled chemical reactions. Finally, besides the fundamental problems, there are many 
other problems whose solutions became possible only with the introduction of unique laser 
techniques of selective excitation and detection of discrete molecular states. These are 
listed and described in Sec. 3 in the context of rotational relaxation. 

The physics of nonequilibrium gases is currently in the first stage of its development. 
As in any new field, it is difficult to estimate the importance of a particular effect and 
its possible practical applications. Nevertheless it is already clear that the study of non- 
equilibrium states is not a simple extension of the frontiers of physics. Progress in the 
study of nonequilibrium states implies the discovery of deeper properties of nature, which 
always leads to new practical applications. 
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